Evaluation of TRMM 3B42 Precipitation Product Using Rain Gauge Data in Meichuan Watershed, Poyang Lake Basin, China
نویسندگان
چکیده
This study evaluated Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) product i.e. TRMM 3B42 data, using data from 52 rain gauge stations around the Meichuan watershed, which is a representative watershed of Poyang Lake basin in China. Both the latest Version 7 (V7) and previous Version 6 (V6) of TRMM 3B42 data were compared and evaluated for a 9-year period covering 2001-2005 and 2007-2010. The evaluations were conducted at different spatial (grid and watershed) and temporal (daily, monthly and annual) scales. For evaluation at grid scale, the Thiessen polygon method was used to transform pointed-based rain gauge data to areal precipitation at the same grid scale (0.25°) as TRMM 3B42 data. The results showed that there was little difference in performances of V6 and V7 TRMM 3B42 products. Overall, both V6 and V7 products slightly overestimated precipitation with a bias of 0.04. At daily scale, both V6 and V7 data were considered to be unreliable with large relative RMSE (135%-199%) at the two spatial scales, and they were deficient in capturing large storms. These results suggest that local calibration with rain gauge data should be conducted before V6 and V7 TRMM 3B42 data are used at daily scale. At monthly and annual scales, V6 and V7 TRMM 3B42 data match the rain gauge data well (R = 0.91-0.99, relative RMSE = 4%-23%) at both grid and watershed scale and thus have good potential for hydrological applications.
منابع مشابه
Evaluation of Satellite Precipitation Products with Rain Gauge Data at Different Scales: Implications for Hydrological Applications
Rain gauge and satellite-retrieved data have been widely used in basin-scale hydrological applications. While rain gauges provide accurate measurements that are generally unevenly distributed in space, satellites offer spatially regular observations and common error prone retrieval. Comparative evaluation of gauge-based and satellite-based data is necessary in hydrological studies, as precipita...
متن کاملDry/Wet Conditions Monitoring Based on TRMM Rainfall Data and Its Reliability Validation over Poyang Lake Basin, China
Local dry/wet conditions are of great concern in regional water resource and floods/droughts disaster risk management. Satellite-based precipitation products have greatly improved their accuracy and applicability and are expected to offer an alternative to ground rain gauges data. This paper investigated the capability of Tropical Rainfall Measuring Mission (TRMM) rainfall data for monitoring t...
متن کاملSensitivity of Distributed Hydrologic Simulations to Ground and Satellite Based Rainfall Products
In this study, seven precipitation products (rain gauges, NEXRAD MPE, PERSIANN 0.25 degree, PERSIANN CCS-3hr, PERSIANN CCS-1hr, TRMM 3B42V7, and CMORPH) were used to force a physically-based distributed hydrologic model. The model was driven by these products to simulate the hydrologic response of a 1232 km watershed in the Guadalupe River basin, Texas. Storm events in 2007 were used to analyze...
متن کاملMulti-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River
In the present study, four high-resolution multi-sensor blended precipitation products, TRMM Multisatellite Precipitation Analysis (TMPA) research product (3B42 V7) and near real-time product (3B42 RT), Climate Prediction Center MORPHing technique (CMORPH) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), are evaluated over the Yangtze Ri...
متن کاملValidation of Satellite Rainfall Products over a Mountainous Watershed in a Humid Subtropical Climate Region of Brazil
Remote sensing allows for the continuous and repetitive measurement of rainfall values. Satellite rainfall products such as Tropical Rainfall Measurement Mission (TRMM) 3B42 and the Hydroestimator (Hydroe) can be potential sources of data for hydrologic applications, mainly in areas with irregular and sparse spatial distributions of traditional rain gauge stations. However, the accuracy of thes...
متن کامل